3次元電磁カスケードB近似理論

角分布関数の計算

I. 数式の導出

新居誠彦*

Calculation of Angular Distribution Function in Three Dimensional Electron-Photon Cascade Theory. I . Expression of Angular Distribution Function.

NII Nobuhiko

Abstract

We derivate an expression of angular distribution function for electron, under Approximation B in the three-dimensional cascade theory.

Keywords : three-dimensional cascade theory, electron angular distribution function, Suzuki-Trotter formula, Prony's interpolation method, Dirichlet series.

1. はじめに

電子の角分布関数を計算する。 計算手順は以下の通り。 (1) 電磁カスケード理論における3次元 電磁カスケード拡散方程式(Landauの 基礎方程式)の解(級数解)を鈴木-Trotter 公式を用いて求める。 (2) 級数解に Prony 内挿法と Dirichlet 級数を適用しハンケル変換を実行する。 (3) 不完全ガンマ関数を用いて表され る角分布関数を導く。

(4) Nishimura の提唱した解析接続の 方法に基づいて角分布関数を計算する (第Ⅱ稿)。

(5) 角分布関数の構成要素や漸化式の

計算を行う(第Ⅲ稿)。

(6) 角分布関数の数値計算を行い,結果 を図表に示す(第IV)。

(7) エネルギー流角分布関数,電子の平 均エネルギー角分布関数を計算し,結果 を図表に示す(V稿)。

2. Landau の基礎方程式

3次元カスケード理論における Landau
 の基礎方程式¹⁾は行列表示を用いて次のように表される。

3. いくつかの変換 3.1. フーリエ変換

(2.1)の両辺に $\exp\left(i\vec{r}\cdot\vec{x}+i\vec{\theta}\cdot\vec{\zeta}\right)$ を乗 じてフーリエ変換を施すとラプラシア ンの演算が実行できる。 $\left(\frac{\partial}{\partial t}-\vec{x}\cdot\frac{\partial}{\partial \vec{\zeta}}\right) \begin{pmatrix} f\\g \end{pmatrix} =$

を用いると (3.3 は

$$\begin{pmatrix} \pi_1(Z_0, E, \theta, t) \\ \gamma_1(Z_0, E, \theta, t) \end{pmatrix}$$

$$= \frac{1}{2\pi} \int_0^{\infty} \begin{pmatrix} f(Z_0, E, 0, \zeta, t) \\ g(Z_0, E, 0, \zeta, t) \end{pmatrix} J_0(\theta\zeta) \zeta d\zeta^{**}(3.4)$$
(3.4) $\mathcal{O}(f, g)$ は $\vec{x} = 0$ とおいた(3.1) \mathcal{O} 解:

$$\frac{\partial}{\partial t} \begin{pmatrix} f(Z_0, E, 0, \zeta, t) \\ g(Z_0, E, 0, \zeta, t) \end{pmatrix}$$

$$= \{ \begin{pmatrix} -A' & B' \\ C' & -\sigma_0 \end{pmatrix} + \left(-\frac{E_s^2 \zeta^2}{4E^2} + \varepsilon \frac{\partial}{\partial E} \right) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \}$$

$$\times \begin{pmatrix} f(Z_0, E, 0, \zeta, t) \\ g(Z_0, E, 0, \zeta, t) \end{pmatrix}$$
(3.5)

3.2. メリン変換, ハンケル変換
(3.5)をメリン変換すれば-A', B',
C'の演算が実行できる。^{2),4)}
$$f(E)$$
のメリン変換 $\mathfrak{M}_{f}(s)$ はsを複素
数として次式で定義される。
 $\mathfrak{M}_{f}(s) = \int_{0}^{\infty} E^{s} f(E) dE$.
微分関数のメリン変換は,
 $\int_{0}^{\infty} E^{s} \frac{df(E)}{dE} dE = -s \mathfrak{M}_{f}(s-1).$
逆変換は
 $f(E) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} E^{-s-1} \mathfrak{M}_{f}(s) ds.$
(3.5)のメリン変換は,
 $\frac{\partial}{\partial t} \begin{pmatrix} \mathfrak{M}_{f}(s,\zeta,t)\\ \mathfrak{M}_{g}(s,\zeta,t) \end{pmatrix} =$

※)係数を除いた(3.4)の積分形をハンケル 変換と呼ぶ。係数の出現は $(2\pi)^3/(2\pi)^4$ より。

$$= \begin{pmatrix} -A(s) & B(s) \\ C(s) & -\sigma_0 \end{pmatrix} \begin{pmatrix} \mathfrak{M}_f(s,\zeta,t) \\ \mathfrak{M}_g(s,\zeta,t) \end{pmatrix}$$
$$- \frac{E_s^2 \zeta^2}{4} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathfrak{M}_f(s-2,\zeta,t) \\ \mathfrak{M}_g(s-2,\zeta,t) \end{pmatrix}$$
$$-s\varepsilon \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathfrak{M}_f(s-1,\zeta,t) \\ \mathfrak{M}_g(s-1,\zeta,t) \end{pmatrix}^{*} \quad (3.6)$$
$$-A(s), B(s), C(s) \ \text{はカスケ} - \text{ド関数}^{20}_{\circ}$$

(3.6)の解にメリン逆変換とハンクル変換を施せば (π_1, γ_1) が得られる。

$$\begin{pmatrix} \pi_1(Z_0, E, \theta, t) \\ \gamma_1(Z_0, E, \theta, t) \end{pmatrix} = \int_0^\infty \zeta d\zeta J_0(\theta\zeta) \\ \times \frac{1}{4\pi^2 i} \int_c \frac{ds}{E^{s+1}} \begin{pmatrix} \mathfrak{M}_f(s, \zeta, t) \\ \mathfrak{M}_g(s, \zeta, t) \end{pmatrix}.$$
(3.7)

これをエネルギーで積分すれば角分布 関数の積分型 (Π_1, Γ_1) が得られる。

$$\begin{pmatrix}
\Pi_1(Z_0, E, \theta, t) \\
\Gamma_1(Z_0, E, \theta, t)
\end{pmatrix}
= \int_E^{Z_0} \begin{pmatrix}
\pi_1(Z_0, E, \theta, t) \\
\gamma_1(Z_0, E, \theta, t)
\end{pmatrix} dE.$$
(3.8)

3.3. ずらし演算子 径数に*s*−1,*s*−2 を含む(3.6)を扱う ために差分演算子 *Δ*を導入する。

$$\Delta f(s) = f(s) - f(s-1). \tag{3.9}$$

※) (3.6)の第 2,3 項に \mathfrak{M}_{g} は存在しないが 式を見やすくするために \mathfrak{M}_{f} と併記する。 不都合は生じない。

$$\begin{pmatrix} \mathfrak{M}_{f}(s,\zeta,t)\\ \mathfrak{M}_{g}(s,\zeta,t) \end{pmatrix} = \mathfrak{M}(s,\zeta,t). \quad (3.11.4)$$

(3.10)は次のように表される。

 $\frac{\partial}{\partial t}\mathfrak{M}\bigl(s,\zeta,t\bigr) =$

$$= \left(P(s) + Q(s)(1 - \Delta) + R(\zeta)(1 - \Delta)^{2} \right)$$

$$\times \mathfrak{M}(s, \zeta, t). \qquad (3.12)$$

$$PQ \neq QP, \quad PR \neq RP.$$

4. 鈴木-Trotter 公式の適用

非可換行列を含む微分方程式(3.12) の解は鈴木-Trotter 公式 ^{5),6)}を用いて 表すことができる: $\mathfrak{M}(s,\zeta,t) = \lim_{n \to \infty} \mathfrak{M}_n(s,\zeta,t),$ $\mathfrak{M}_n(s,\zeta,t)$ $= \left(e^{R(s)(1-\Delta)^2 \Delta t} e^{Q(s)(1-\Delta)\Delta t} e^{P(s)\Delta t} \right)^n$ $\times \mathfrak{M}_0(s),$ (4.1) $\Delta t = t/n$. 初期条件を電子光子の同時入射とする と $\mathfrak{M}_{0}(s) = \int_{0}^{\infty} E^{s} dE \begin{pmatrix} \delta(E - E_{0}) \\ \delta(E - E_{0}) \end{pmatrix}$ $= \begin{pmatrix} E_0^{\ s} \\ W_0^{\ s} \end{pmatrix}.$ (4.2)(f,g)*)は次のように求められる。 $\begin{pmatrix} f(Z_0, E, \zeta, t) \\ g(Z_0, E, \zeta, t) \end{pmatrix} = \lim_{n \to \infty} \begin{pmatrix} f(Z_0, E, \zeta, t) \\ g(Z_0, E, \zeta, t) \end{pmatrix}_n,$ $\binom{f(Z_0, E, \zeta, t)}{g(Z_0, E, \zeta, t)}_n = \frac{1}{2\pi i} \int_c \frac{ds}{E^{s+1}}$

 $\times \left(e^{R(\zeta)(1-\Delta)^2 \Delta t} e^{Q(s)(1-\Delta)\Delta t} e^{P(s)\Delta t} \right)^n \begin{pmatrix} E_0^{s} \\ W_0^{s} \end{pmatrix}.$ (4.3)

※) $f(Z_0, E, 0, \zeta, t) \geq f(Z_0, E, \zeta, t) \geq 記す$ 。 g も同様。

5. (f,g)の計算

(4.3)の2つの指数行列を $\mathrm{e}^{Q(s)(1-\varDelta)\varDelta t} = U + Q(s)(1-\varDelta)\varDelta t + o\left(\varDelta t\right)^2,$ $e^{R(\zeta)(1-\Delta)^{2}\Delta t} = U + R(\zeta)(1-\Delta)^{2}\Delta t + o(\Delta t)^{2}$ と展開して, ずらし演算と極限移行を実 行すると(4.3)に例えば次のような項が 現れる。

$$\int_{0}^{t} e^{P(s)(t-t')} (-s\varepsilon) Q_0 dt' \int_{0}^{t'} e^{P(s-1)(t'-t'')} Q_0 dt'' \times \left(-\frac{E_s^2 \zeta^2}{4}\right) e^{P(s-3)t''} \mathfrak{M}_0(s-3) = A'.$$

5.1. メリン逆変換と sの原点移動

A'にメリン逆変換を施す(Aと記す)。 このとき 8 の原点を項別にずらすこと ができる。7,7,7' $s \rightarrow s+3$ とすると,

$$A = \frac{1}{2\pi i} \int_{c} \frac{ds}{E^{s+1}}$$

 $\times \int_{0}^{t} e^{P(s+3)(t-t')} \left(-(s+3)\frac{\varepsilon}{E} \right) Q_{0} dt'$
 $\times \int_{0}^{t'} e^{P(s+2)(t'-t'')} \left(-\frac{E_{s}^{2} \zeta^{2}}{4E^{2}} \right) Q_{0} dt'' e^{P(s)t''} \mathfrak{M}_{0}(s).$

5.2. 第2のずらし演算子

原点移動を別のずらし演算子を用い

て表現する。
$$s$$
のどのような関数 $f(s)$

にも前方から後方(左側)へ演算する差 $分演算子 \overline{\Delta} を定義する:$

$$f(s)\overline{\Delta} = f(s) - f(s+1). \tag{5.1}$$

次式が成り立つ。

$$\begin{split} f(s)(1-\overline{\Delta}) &= f(s+1), \\ f(s)(1-\overline{\Delta})^n &= f(s+n), \\ f(s)(1-\overline{\Delta})^m g(s)(1-\overline{\Delta})^n \\ &= \left(f(s)(1-\overline{\Delta})^{m+n}\right) \left(g(s)(1-\overline{\Delta})^n\right). \quad (5.2) \\ \\ \vec{\tau} & \vdash \downarrow i \in J \quad \text{if } i \in J \quad \text{$$

$$A = \frac{1}{2\pi i} \int_{c} \frac{ds}{E^{s+1}}$$

$$\times \int_{0}^{t} e^{P(s)(t-t')} (-s\varepsilon) Q_{0} (1-\overline{\Delta}) dt'$$

$$\times \int_{0}^{t'} e^{P(s)(t'-t'')} \left(-\frac{E_{s}^{2} \zeta^{2}}{4}\right) Q_{0} (1-\overline{\Delta})^{2} dt''$$

$$\times e^{P(s)t''} \mathfrak{M}_{0}(s). \qquad (5.3)$$

演算子の左側のE^{-s}は演算を受けたあ と右側へ移すことができる。このとき (5.3)を次のように表すことができる。

$$A = \frac{1}{2\pi i} \int_{c} \frac{ds}{E}$$

$$\times \int_{0}^{t} e^{P(s)(t-t')} \left(-s\frac{\varepsilon}{E}\right) Q_{0} \left(1-\overline{\Delta}\right) dt'$$

$$\times \int_{0}^{t'} e^{P(s)(t'-t'')} \left(-\frac{E_{s}^{2}\zeta^{2}}{4E^{2}}\right) Q_{0} \left(1-\overline{\Delta}\right)^{2} dt''$$

$$\times e^{P(s)t''} \left(\frac{(E_{0}/E)^{s}}{(W_{0}/E)^{s}}\right). \tag{5.3}'$$

(5.3)'を一般化すると(4.3)は次のよう に書き換えることができる。

$$\begin{pmatrix} f\left(Z_{0}, E, \zeta, t\right) \\ g\left(Z_{0}, E, \zeta, t\right) \\ \end{pmatrix}_{n} = \frac{1}{2\pi i} \int_{c} \frac{ds}{E} \\ \times \left(e^{-\frac{E_{s}^{2} \zeta^{2}}{4E^{2}} (1-\overline{A})^{2} Q_{0} \Delta t} e^{-\frac{\varepsilon}{E} (1-\overline{A})(s+1)Q_{0} \Delta t} e^{P(s) \Delta t} \right)^{n} \\ \times \left(\left(E_{0}/E\right)^{s} \\ \left(W_{0}/E\right)^{s} \right) .$$

$$(5.4)$$

.

ここで
$$\left(-\frac{s\varepsilon}{E}\right)Q_0\left(1-\overline{\Delta}\right)\Delta t$$
を
 $-\frac{\varepsilon}{E}\left(1-\overline{\Delta}\right)(s+1)Q_0\Delta t$ と表した。

2 つの行列,

$$\left(-rac{{E_s}^2{\zeta}^2}{4E^2}
ight)\!\left(1\!-\!ar{arDelta}
ight)^2Q_0arDelt$$

$$-\frac{\varepsilon}{E}(1-\overline{\Delta})(s+1)Q_0\Delta t$$
 は可換である。

可換行列A, Bについて $e^A e^B = e^{A+B}$ と

表すことができるから散乱項と電離損 失項とは重ね合わすことができる。

$$\begin{pmatrix} f(Z_0, E, \zeta, t) \\ g(Z_0, E, \zeta, t) \end{pmatrix}_n$$

$$= \frac{1}{2\pi i} \int_c \frac{ds}{E} \times \left(e^{\left(-\frac{E_s^2 \zeta^2}{4E^2} (1-\overline{A})^2 - \frac{\varepsilon}{E} (1-\overline{A})(s+1) \right) Q_0 \Delta t} e^{P(s) \Delta t} \right)^n$$

$$\times \left(\begin{pmatrix} (E_0/E)^s \\ (W_0/E)^s \end{pmatrix} \right).$$
(5.5)

6. 解の計算

(5.5)において

$$e^{\left(-\frac{E_s^2\zeta^2}{4E^2}(1-\overline{\Delta})^2 - \frac{\varepsilon}{E}(1-\overline{\Delta})(s+1)\right)Q_0\Delta t}$$
$$= U + \left\{-\frac{E_s^2\zeta^2}{4E^2}(1-\overline{\Delta})^2 - \frac{\varepsilon}{E}(1-\overline{\Delta})(s+1)\right\}Q_0\Delta t + \cdots$$

と展開する。 極限移行すれば(5.5)の右辺は

$$\begin{split} & e^{P(s)t} + \int_0^t e^{P(s)(t-t')} \\ \times \left(-\frac{E_s^2 \zeta^2}{4E^2} \left(1 - \overline{\Delta}\right)^2 - \frac{\varepsilon}{E} \left(1 - \overline{\Delta}\right) (s+1) \right) \\ \times Q_0 e^{P(s)t'} dt' + \cdots \\ & \succeq t_{\widehat{a}} \lesssim_0 \end{split}$$

第3項以降に出現する項数は次数に 関して2の累乗で増大していく。カス ケード粒子の辿る経路は世代とともに 多岐にわたり錯綜していく。散乱項と電 離損失項が重ね合わされた(5.5)はカス ケード過程を正しく記述するが,2つの 過程が並列する重ね合わせは高次での 項数増大のため計算に適するとはいい がたい。そこで重ね合わせを修正し,散 乱過程と電離損失過程が直列した樹形 モデルを導入する。

6.1. 樹形モデル

樹形モデルは3次元A近似過程に1 次元B近似過程を結びつけた形で3次 元B近似過程を構成する。すなわち, 入射粒子が辿る過程を幹(図1,黒線) とし幹から生ずる過程を枝(青線)とし て,幹を3次元A近似散乱過程,枝を 1次元B近似電離損失過程とする。 幹の電離損失や枝の散乱は考えない。

図1 樹形モデル

このモデルの下で
$$(f, g)$$
 は,

$$\begin{pmatrix} f(Z_0, E, \zeta, t) \\ g(Z_0, E, \zeta, t) \end{pmatrix} = \frac{1}{2\pi i} \int_c \frac{ds}{E}$$

$$\times \lim_{m,n\to\infty} \left\{ \left(e^{-\frac{\varepsilon}{E}(1-\bar{A})(s+1)Q_0 \Delta t} e^{P(s)\Delta t} \right)^n \right\}$$

$$\times \left(e^{-\frac{E_s^2 \zeta^2}{4E^2}(1-\bar{A})^2 Q_0 \Delta t} e^{P(s)\Delta t} \right)^m \left\{ \begin{pmatrix} E_0/E \end{pmatrix}^s \\ (W_0/E)^s \end{pmatrix}, \Delta t = t/m, t/n.$$
(6.1)

6.2. 幹の計算

散乱過程をAと記す。 【(6.1)におけるメリン逆変換の表示を ここでは便宜的に省略する】

$$A = \left(e^{-\frac{E_s^2 \zeta^2}{4E^2} (1-\bar{\Delta})^2 Q_0 \Delta t} e^{P(s)\Delta t} \right)^m$$

= $e^{P(s)m\Delta t}$
+ $\left(-\frac{E_s^2 \zeta^2}{4E^2} \right) \sum_{k=1}^m e^{P(s+2)(m-k)\Delta t} Q_0 e^{P(s)k\Delta t} \Delta t$
+ $\left(-\frac{E_s^2 \zeta^2}{4E^2} \right)^2 \sum_{k=1}^m \sum_{k'=1}^k e^{P(s+4)(m-k)\Delta t} \Delta t$
× $Q_0 e^{P(s+2)(k-k')\Delta t} Q_0 e^{P(s)k'\Delta t} \Delta t + \cdots$

【極限移行する】

$$= e^{P(s)t} + \left(-\frac{E_s^2 \zeta^2}{4E^2}\right) \int_0^t e^{P(s+2)(t-t')} Q_0 e^{P(s)t'} dt' + \cdots \\ = \sum_{m=0}^\infty \left(-\frac{E_s^2 \zeta^2}{4E^2}\right)^m \phi_{m0}(s,t), \quad (6.2)$$

$$\phi_{m0}(s,t) = \int_{0}^{t} \phi_{00}(s+2m,t-t')$$

× Q₀\phi_{m-10}(s,t')dt', (6.3)

$$\phi_{00}\left(s,t\right) = \mathrm{e}^{P(s)t}.$$
(6.4)

6.3. ラプラス変換

$$\phi_{m0}(s,t) & \varepsilon = \neg = \neg = z \otimes \psi = z_{0}^{\infty} dt e^{-\alpha t} \phi_{m0}(s,t)$$

 $= \int_{0}^{\infty} dt e^{-\alpha t}$
 $\times \int_{0}^{t} dt' \phi_{00}(s+2m,t-t') Q_{0} \phi_{m-10}(s,t')$
【積分順序を変更し $t-t' = \tau \geq z \leq 1$
 $= \int_{0}^{\infty} dt' e^{-\alpha t'}$
 $\times (\int_{0}^{\infty} d\tau e^{-\alpha t} \phi_{00}(s+2m,\tau)) Q_{0} \phi_{m-10}(s,t')$
 $= \mathfrak{L}_{00}(s+2m,\alpha) Q_{0} \mathfrak{L}_{m-10}(s,\alpha)$
 $= \mathfrak{L}_{00}(s+2m,\alpha)$
 $\times (\prod_{k=1}^{m-1} Q_{0} \mathfrak{L}_{00}(s+2k,\alpha)) Q_{0} \mathfrak{L}_{00}(s,\alpha).$
U $\hbar^{3} \Im \mathbb{C} Q_{0} = Q_{0}^{2} \hbar^{3} \Re \psi \pm \neg \circ$
 $Q_{0} \& Q_{0}^{2} \subset \mathbb{E} \succeq \psi z \leq \Sigma$
 $\mathfrak{L}_{00}(s+2k,\alpha) \And = \mathfrak{M} (s+2k,\alpha) Q_{0}$
 $\times (\prod_{k=1}^{m-1} Q_{0} \mathfrak{L}_{00}(s+2k,\alpha) Q_{0})$
 $\times Q_{0} \mathfrak{L}_{00}(s,\alpha)$
 $= (\prod_{k=1}^{m-1} a(s+2k,\alpha))$
 $\times (a(s+2m,\alpha) = 0) (a(s,\alpha) - b(s,\alpha)) (a(s,\alpha) - b(s,\alpha)) (a(s+2m,\alpha) - 0) (a(s,\alpha) - b(s,\alpha)) (a(s+2m,\alpha) - 0) (a($

$$a(s,\alpha) = \frac{\alpha + o_0}{(\alpha - \lambda_1(s))(\alpha - \lambda_2(s))},$$

$$b(s,\alpha) = \frac{B(s)}{(\alpha - \lambda_1(s))(\alpha - \lambda_2(s))},$$

$$c(s,\alpha) = \frac{C(s)}{(\alpha - \lambda_1(s))(\alpha - \lambda_2(s))}.$$

$$(a(s, \alpha)$$
を第Ⅲ稿§2.3で導く)

6.4. 枝の計算 電離損失過程を Bと記す。 幹の $\phi_{m0}(s,t)$ がBの初期値となる。 【(6.1)におけるメリン逆変換の表示を ここでは便宜的に省略する】 $B = \left(e^{-\frac{\varepsilon}{E} (1-\overline{\Delta})(s+2m+1)Q_0 \Delta t} e^{P(s+2m)\Delta t} \right)^n$ $= e^{P(s+2m)n\Delta t}$ $+\left(-\frac{\varepsilon}{E}\right)(s+2m+1)$ $\times \sum_{k=1}^{n} \mathrm{e}^{P(s+2m+1)(n-k)\Delta t} Q_0 \, \mathrm{e}^{P(s+2m)k\Delta t} \Delta t$ $+\left(-\frac{\varepsilon}{E}\right)^{2}\left(s+2m+2\right)\left(s+2m+1\right)$ $\times \sum_{k=1}^{n} \sum_{k'=1}^{k} e^{P(s+2m+2)(n-k)\Delta t}$ $\times Q_0 e^{P(s+2m+1)(k-k')\Delta t} \Delta t Q_0 e^{P(s+2m)k'\Delta t} \Delta t + \cdots$ 【極限移行する】 $= e^{P(s+2m)t}$ $+(s+2m+1)\left(-\frac{\varepsilon}{E}\right)$ $\times \int_{0}^{t} e^{P(s+2m+1)(t-t')} Q_{0} e^{P(s+2m)t'} dt' + \cdots$ $=\sum_{n=0}^{\infty}\frac{\left(s+2m+n\right)}{\left(s+2m\right)}\left(-\frac{\varepsilon}{E}\right)^{n}\phi_{mn}\left(s,t\right),$ (6.5)

$$\begin{split} \phi_{mn}(s,t) \\ &= \int_{0}^{t} \phi_{00}(s+2m+n,t-t') \\ &\times Q_{0} \phi_{mn-1}(s+2m,t') dt'. \quad (6.6) \\ \phi_{mn}(s,t) &\geq \neg \neg \neg \neg \rangle \\ &\phi_{mn}(s,t) &\geq \neg \neg \neg \neg \rangle \\ &fi finic \Rightarrow it \Rightarrow \exists \Rightarrow \forall \neg \neg \neg \rangle \\ &fi finic \Rightarrow it \Rightarrow \exists \Rightarrow \forall \neg \neg \neg \neg \neg \neg \Rightarrow \\ & \mathcal{E}_{mn}(s,\alpha) \\ &= \begin{pmatrix} n-1 \\ \prod_{k=1}^{n-1} a(s+2m+k,\alpha) \end{pmatrix} \begin{pmatrix} \prod_{k=1}^{m} a(s+2k,\alpha) \\ \prod_{k=1}^{m} a(s+2k,\alpha) \end{pmatrix} \\ &\times \begin{pmatrix} a(s+2m+n,\alpha) & 0 \\ c(s+2m+n,\alpha) & 0 \end{pmatrix} \begin{pmatrix} a(s,\alpha) & b(s,\alpha) \\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

14 2 2 -----

6.5. ラフラス逆変換と主要項近似
ラプラス逆変換:

$$\phi_{mn}(s,t) = \frac{1}{2\pi i} \int_{\delta} d\alpha e^{\alpha t} \mathcal{L}_{mn}(s,\alpha)$$

において $a(s,\alpha)$ や $b(s,\alpha)$ の極のうち
 $\alpha = \lambda_1(s)$ が最も主要な極である。よっ
 $\tau \lambda_1(s)$ のみを採用する(主要項近似と
ここで呼ぶ。 $t \ge 2$ なら十分満たされる)。
 $\lambda_1(s)$ を含むように積分路 δ をとる。
 $\phi_{mn}(s,t)$
 $= \prod_{k=1}^{n-1} \{ \frac{\lambda_1(s) + \sigma_0}{(\lambda_1(s) - \lambda_1(s' + k))(\lambda_1(s) - \lambda_2(s' + k))} \}_{|s' = s + 2m}$
 $\times \prod_{k=1}^{m} \{ \frac{\lambda_1(s) + \sigma_0}{(\lambda_1(s) - \lambda_1(s + 2k))(\lambda_1(s) - \lambda_2(s + 2k))} \}_{x}$

$$\times \begin{pmatrix} \lambda_{1}(s) + \sigma_{0} & 0 \\ \hline (\lambda_{1}(s) - \lambda_{1}(s'))(\lambda_{1}(s) - \lambda_{2}(s')) & 0 \\ \hline C(s') & 0 \\ \hline (\lambda_{1}(s) - \lambda_{1}(s'))(\lambda_{1}(s) - \lambda_{2}(s')) & 0 \end{pmatrix}$$
$$|s' = s + 2m + n$$
$$\times \begin{pmatrix} H_{1}(s) & \frac{B(s)}{(\lambda_{1}(s) - \lambda_{2}(s))} \\ 0 & 0 \end{pmatrix} e^{\lambda_{1}(s)t} .$$
(6.8)

(6.8)の4つの過程は図2に示すような 構造である(図中 a,b,cは, $a:e \rightarrow e$, $b:\gamma \rightarrow e, c:e \rightarrow \gamma c r r$)。

は電離損失過程をそれぞれ記述する。

7.1. 二重和における $\rho_n(s+2m)$ の m, n分離

$$ho_n(s+2m)$$
が m の部分と n の部分

とに分離できれば(7.1)の2重和が求め られる。これを検討する。 先ず,

$$S \simeq \sum_{m=0}^{\infty} \left(-\frac{E_s^2 \zeta^2}{4E^2} \right)^m \frac{\sigma_m(s)}{\rho_{2m}(s)}$$
$$\times \sum_{n=0}^{\infty} \left(\frac{s+2m+n}{n} \right) \left(-\frac{\varepsilon}{E} \right)^n n! \rho_n(s). \quad (7.5)$$

7.2. Prony 法と Dirichlet 級数を用いた 2 重和の計算

(7.5)の m,n に関する和を計算する。

7.2.1. n の和—Prony 法の適用 Pronv 内挿法[®]の手法を用いて $n!\rho_n(s) = \sum_{j=1}^N D_j(s)\beta_j(s)^n$ (7.6)と表す。2N 個の $D_i(s), \beta_i(s), (j=1,$ …,N)は2N個の既知数 $n!\rho_n(s)$ $(n=0,\dots,2N-1)$ から一意的に定まる。 (7.5)の第2の和をS」と表す。 $S_{1} = \sum_{j=1}^{N} D_{j}(s) \sum_{n=0}^{\infty} {s+2m+n \choose n} \left(-\frac{\varepsilon \beta_{j}(s)}{E}\right)^{n}.$ $\epsilon \beta_i(s)/E < 1$ のとき nの和が存在する。 条件を満たすように*E*を大きくとると, $S_{1} = \sum_{j=1}^{N} \frac{D_{j}(s)}{\left(1 + \varepsilon \beta_{j}(s)/E\right)^{s+2m+1}}.$ 分母における分数は(7.1)の右辺に在る $E^{-s-2m-1}$ と相俟って分子と分母が分離 した形になる。すなわち $f(E_0, E, \zeta, t)$ $=\frac{1}{2\pi i}\int_{c}E_{0}^{s}dsH_{1}(s)\mathrm{e}^{\lambda_{1}(s)t}\times$

$$\times \sum_{j=1}^{N} \sum_{m=0}^{\infty} \left(-\frac{E_s^2 \zeta^2}{4 \left(E + \varepsilon \beta_j(s) \right)^2} \right)^m \frac{\sigma_m(s)}{\rho_{2m}(s)} \times \frac{D_j(s)}{\left(E + \varepsilon \beta_j(s) \right)^{s+1}}.$$
(7.7)

ここで大きな Eという条件は解除できる。以降で極限($E \rightarrow 0$)が可能となる。

7.2.2. mの和—Dirichlet 級数の適用

(7.7)のmの和は、ベキ級数の一般化 ともみなされる Dirichlet 級数 9 で表す ことができる。mの和をS、と記す。

$$S_{2} = \sum_{m=0}^{\infty} \left(-\frac{E_{s}^{2} \zeta^{2}}{4 \left(E + \varepsilon \beta_{j}(s) \right)^{2}} \right)^{m} \frac{\sigma_{m}(s)}{\rho_{2m}(s)}$$
$$= \sum_{i=1}^{M} C_{i}(s) e^{-\frac{\alpha_{i}(s) E_{s}^{2} \zeta^{2}}{4 \left(E + \varepsilon \beta_{j}(s) \right)^{2}}}.$$
(7.8)

指数部分を展開して辺々比較すれば $\sum_{i=1}^{M} C_i(s) \alpha_i(s)^m = m! \sigma_m(s) / \rho_{2m}(s).$ これは Prony 法の手法で用いた(7.6)と 同じ構造である。^{*), ***)}よって 2*M* 個

※) Prony 内挿法は Dirichlet 級数を用いて補 間する方法である。⁸⁾

Prony 法と Dirichlet 級数法とは等価である。

の $C_i(s), \alpha_i(s), (i = 1, ..., M) は 2M$ 個の既知数 $m ! \sigma_m(s) / \rho_{2m}(s), (m = 0, 1, ..., 2M - 1) から一意的に定まる。$ (7.7),(7.8)から, $<math>f(E_0, E, \zeta, t) = \frac{1}{2\pi i} \int_c E_0^s ds H_1(s) e^{\lambda_1(s)t}$ $\alpha_1(s) E^{2\zeta^2}$

$$\times \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{C_i(s) D_j(s)}{\left(E + \varepsilon \beta_j(s)\right)^{s+1}} e^{-\frac{\alpha_i(c) - \varepsilon s}{4\left(E + \varepsilon \beta_j(s)\right)^2}}.$$
 (7.9)

8. 角分布関数

8.1. 数式の導出

(7.9)をハンケル変換すれば角分布関 数微分型 $\pi_1(E_0, E, \theta, t)$ が求められる。 $\pi_1(E_0, E, \theta, t)$ $= \frac{1}{2\pi} \int_0^\infty f(E_0, E, \zeta, t) J_0(\theta\zeta) \zeta d\zeta.$ (8.1) $\int_0^\infty e^{-at^2} J_0(bt) t dt = (1/2a) e^{-b^2/4a}$ (8.2) であるから、 $\pi_1(E_0, E, \theta, t) = \frac{1}{4\pi^2 i} \int_c E_0^{-s} ds H_1(s) e^{\lambda_1(s)t}$ $\times \frac{2}{E_s^2} \sum_{i=1}^M \frac{C_i(s)}{\alpha_i(s)}$ $\times \sum_{j=1}^N \frac{D_j(s)}{(E + \varepsilon \beta_j(s))^{s-1}} e^{-\frac{(E + \varepsilon \beta_j(s))^2 \theta^2}{\alpha_i(s) E_s^2}}.$ (8.3)

積分型 Π_1 は $\Pi_1(E_0, E, \theta, t) = \int_E^{E_0} \pi_1(E_0, E, \theta, t) dE.$ (8.3)のエネルギーに関する積分は第2 種不完全ガンマ関数¹⁰⁾ に至る:

$$\Pi_{1}\left(E_{0}, E, \theta, t\right) = \frac{1}{4\pi^{2}i} \int_{c} \left(\frac{E_{0}\theta}{E_{s}}\right)^{s} \frac{ds}{\theta^{2}} H_{1}(s) e^{\lambda_{i}(s)t} \\
\times \sum_{i=1}^{M} \frac{C_{i}(s)}{\alpha_{i}(s)^{s/2}} \sum_{j=1}^{N} D_{j}(s) \\
\times \left\{\Gamma\left(-\frac{s}{2}+1, \frac{\left(E+\varepsilon\beta_{j}(s)\right)^{2}\theta^{2}}{\alpha_{i}(s)E_{s}^{2}}\right)\right\} \\
-\Gamma\left(-\frac{s}{2}+1, \frac{\left(E_{0}+\varepsilon\beta_{j}(s)\right)^{2}\theta^{2}}{\alpha_{i}(s)E_{s}^{2}}\right)\right\}. (8.5)$$

8.2. A 近似式と B 近似式 角分布関数の A, B 近似式を導く。^{※)}

8.2.1. A近似式 $\varepsilon \ll E \ll E_0 \mathcal{O} \times \mathcal{R} \mathcal{P} \mathcal{P} - \mathcal{E}$ 対象とす $\mathcal{Z}_{\circ} (8.5) \mathcal{T} \varepsilon = 0$ とみなすと, $\Pi_1(E_0, E, \theta, t)$ $= \frac{1}{4\pi^2 i} \int_c \left(\frac{E_0 \theta}{E_s}\right)^s \frac{ds}{\theta^2} H_1(s) e^{\lambda_1(s)t}$ $\times \sum_{i=1}^M \frac{C_i(s)}{\alpha_i(s)^{s/2}}$ $\times \{\Gamma\left(-\frac{s}{2}+1, \frac{1}{\alpha_i(s)}\left(\frac{E\theta}{E_s}\right)^2\right)$ $-\Gamma\left(-\frac{s}{2}+1, \frac{1}{\alpha_i(s)}\left(\frac{E_0 \theta}{E_s}\right)^2\right)\}.$ (8.6)

※)電磁カスケード理論において電離損失を 無視する理論をA近似理論、考慮する理論 をB近似理論と呼ぶ。

ここで恒等式
$$\sum_{j=1}^{N} D_{j}(s) = 1$$
を用いた。

8.2.2. B近似式 (エネルギー閾値ゼロ)
(8.5)で
$$E \to 0 \ge \pm 3$$
。かつ, $\varepsilon \ll E_0 \varepsilon$
考慮する \ge ,
 $\Pi_1(E_0, 0, \theta, t)$
 $= \frac{1}{4\pi^2 i} \int_c \left(\frac{E_0 \theta}{E_s}\right)^s \frac{ds}{\theta^2} H_1(s) e^{\lambda_1(s)t}$
 $\times \sum_{i=1}^M \frac{C_i(s)}{\alpha_i(s)^{s/2}} \sum_{j=1}^N D_j(s)$
 $\times \{\Gamma\left(-\frac{s}{2}+1, \frac{\beta_j(s)^2}{\alpha_i(s)}\left(\frac{\varepsilon \theta}{E_s}\right)^2\right)$
 $-\Gamma\left(-\frac{s}{2}+1, \frac{1}{\alpha_i(s)}\left(\frac{E_0 \theta}{E_s}\right)^2\right)\}.$ (8.7)

8.3. 角分布関数の体積

角分布関数(8.5)の体積は1次元遷移 曲線を与えなければならない。それを確 認する。

$$\begin{split} \int_{0}^{\infty} \Pi_{1}(E_{0}, E, \theta, t) 2\pi\theta d\theta &= V(E_{0}, E, t) \\ \geq 記す_{\circ} \\ \int_{0}^{\infty} x^{\mu} \Gamma(\nu, x) dx &= \frac{(\mu + \nu)!}{\mu + 1} \quad \& \exists \nu \lor \Im \geq 1 \\ V(E_{0}, E, t) &= \frac{1}{2\pi i} \int_{c} E_{0}^{s} \frac{ds}{s} H_{1}(s) e^{\lambda_{1}(s)t} \\ \times \sum_{j=1}^{N} D_{j}(s) \{ \frac{1}{(E + \varepsilon \beta_{j}(s))^{s}} - \frac{1}{(E_{0} + \varepsilon \beta_{j}(s))^{s}} \}. \end{split}$$

$$(8.8)$$

$$\Box \subset \heartsuit \end{tabular}$$

(i) A 近似の場合 (8.7)において $\varepsilon = 0$ とおく。 $E \ll E_0$ お よび $\sum D_j(s) = 1$ を考慮すると、 $V(E_0, E, t)$ $= \frac{1}{2\pi i} \int_c \left(\frac{E_0}{E}\right)^s \frac{ds}{s} H_1(s) e^{\lambda_i(s)t}.$ よく知られた A 近似遷移曲線を得る。

(ii) B 近似の場合

(8.8) において $E \rightarrow 0$ とし、かつ $\varepsilon \ll E_0 \varepsilon$ 考慮すると、

$$V(E_0, 0, t) = \frac{1}{2\pi i} \int_c \left(\frac{E_0}{\varepsilon}\right)^s \frac{ds}{s} H_1(s) e^{\lambda_1(s)t}$$
$$\times \sum_{j=1}^N D_j(s) \beta_j(s)^{-s}.$$

然るに
$$\sum_j D_j(s) \, oldsymbol{eta}_j(s)^{-s}$$
 は Greisen

の
$$K$$
関数, $K_1(s,-s)$, に等しい(補
遺に示す)。よって,

 $V(E_0,0,t) = \frac{1}{2\pi i} \int_c \left(\frac{E_0}{\varepsilon}\right)^s \frac{ds}{s} H_1(s) e^{\lambda_1(s)t} K_1(s,-s).$

よく知られた B 近似遷移曲線を得る。 角分布関数の体積は A 近似, B 近似と も 1 次元遷移曲線を正確に与えること が確認された。

参考文献

1)L.D.Landau, *Collected Papers of Landau*, ed. D ter Haar, Pergamon

Press(1965).

2)J.Nishimura, Handbuch der Physik XLVI/2(1967),1. 3)数学公式Ⅲ(岩波書店,1994). 4)B.Rossi and K.Greisen, Rev.Mod. Phys. 13(1941),240. 5)H.F.Trotter, Proc.Amer.Math.Phys. Soc.10(1959),545. 6)M.Suzuki,Commun.Math.Phys.51(1 976),183. 7)H.J.Bhabha,F.R.S.Chakrabarty, Proc.Roy.Soc.London(Ser.A, Math.and Phys.)181(1943),267. 7) 新居誠彦,足利大学研究集録第56号 (2021.3), p.21に7)の補足を示している。 8)日高孝次、数值積分法(岩波書店,1942). 9)森口,宇田川,一松,数学公式Ⅱ(岩波 全書,1957). 10)前揭, 数学公式Ⅲ(岩波全書 1994).

補 遺 $\sum_{j=1}^{N} D_{j}(s) \beta_{j}(s)^{-s} = K_{1}(s,-s)$ の証明

はじめに
(1)
$$K_1(s,-s)$$
は次の漸化式によって定
義される。⁴⁾
$$\left[\lambda_1(s) + A(s+r) - \frac{B(s+r)C(s+r)}{\lambda_1(s) + \sigma_0}\right]$$

× $K_1(s,r) = rK_1(s,r-1),$
 $K_1(s,0) = 1.$ (A1)

(2) 関数
$$\lambda_1(s), \lambda_2(s)$$
は第Ⅲ稿§2から,

$$\lambda_{1}(s) = \frac{1}{2} [-A(s) - \sigma_{0} + \sqrt{(A(s) - \sigma_{0})^{2} + 4B(s)C(s)}],$$

$$\lambda_2(s) = \frac{1}{2} [-A(s) - \sigma_0$$
$$-\sqrt{\left(A(s) - \sigma_0\right)^2 + 4B(s)C(s)}].$$

次の関係式が成り立つ:

$$\lambda_1(s) + \lambda_2(s) = -A(s) - \sigma_0,$$

$$(\lambda_1(s) + A(s))(\lambda_1(s) + \sigma_0) = B(s)C(s).$$

(3) 漸化式左辺の関数は,

$$B(s+r)C(s+r)$$

$$= (\lambda_{1}(s+r) + A(s+r))(\lambda_{1}(s+r) + \sigma_{0}),$$

$$A(s+r) + \sigma_{0} = -\lambda_{1}(s+r) - \lambda_{2}(s+r)$$
を用いて、次のように変形できる。
$$\frac{(\lambda_{1}(s) - \lambda_{1}(s+r))(\lambda_{1}(s) - \lambda_{2}(s+r)))}{\lambda_{1}(s) + \sigma_{0}}$$

$$\times K_{1}(s,r) = rK_{1}(s,r-1).$$
(A2)

(4)1次元電離損失過程を記述する量;

 $ho_{_n}(s)$

$$= \prod_{k=1}^{n} \frac{\lambda_1(s) + \sigma_0}{\left(\lambda_1(s) - \lambda_1(s+k)\right) \left(\lambda_1(s) - \lambda_2(s+k)\right)},$$

$$\rho_0(s) = 1.$$
 (A3)

を§7で導いた((7.3), m=0)。かつ, Prony 法の手法を適用して

$$n! \rho_n(s) = \sum_{j=1}^N D_j(s) \beta_j(s)^n \qquad (A4)$$
と表した(§7.2.1)。

(A3)を漸化式で表せば、

$$\rho_n(s) = \frac{(\lambda_1(s) + \sigma_0) \times \rho_{n-1}(s)}{(\lambda_1(s) - \lambda_1(s+n))(\lambda_1(s) - \lambda_2(s+n)))}.$$
本 論
(1) 整数 $n = 0, 1, 2, \cdots$ について、
 $n! \rho_n(s) = y_n(s)$ (A5)
と記すと、
 $y_n(s) = \frac{n(\lambda_1(s) + \sigma_0) \cdot y_{n-1}(s)}{(\lambda_1(s) - \lambda_1(s+n))(\lambda_1(s) - \lambda_2(s+n)))}.$
寸なわち、
 $\frac{(\lambda_1(s) - \lambda_1(s+n))(\lambda_1(s) - \lambda_2(s+n))}{\lambda_1(s) + \sigma_0}$
 $\times y_n(s) = ny_{n-1}(s),$ } (A6)
 $z o$ 漸化式は $K_1(s, r) o$ 漸化式と同じ
である。よって、
 $\sum_{j=1}^{N} D_j(s) \beta_j(s)^n = y_n(s) = K_1(s, n).$ (A7)
 $n \circ, \sum_{j=1}^{N} D_j(s) = 1$ (恒等式) から境界
条件 $K_1(s, 0) = 1$ が満たされる。
(2) 負の整数 $r = -1, -2, \cdots$ について、
 $K_1(s, r-1)$
 $= \frac{(\lambda_1(s) - \lambda_1(s+r))(\lambda_1(s) - \lambda_2(s+r)))}{r(\lambda_1(s) + \sigma_0)}$
 $\times K_1(s, r)$ (A8)
 $n \circ 5,$

あとがき $\sum_{s=1}^{N} D_{j}(s) \beta_{j}(s)^{n}$ のnを-sへ外挿す れば $K_1(s,-s)$ の値が原理的に得られる。 しかし Prony 内挿法が「外挿」に適す るとは限らない。実際 $K_1(1,-1)$ をN=13 として求めたところ Rossi-Greisen の与 えた値 2.29 に対して 2.19 であった。 -4.5%の相対誤差は大きいと著者は考 える。 $K_1(s,-s)$ の値は外挿からではなく Prony 内挿法を用いて求めることがで きる。 本稿の内容に直接かかわることではな いけれどもそれを次に記す。 既知の値; $y_0 = 1, y_{-1} = 2.28945, y_{-2} = 3.45191,$ $y_{-3} = 5.98513$ が $K_1(n,-n)$ を与える。 $(n!)^{2} K_{1}(n,-n) = \sum_{k=1}^{4} a_{k} b_{k}^{n}$ と表す。 a_k, b_k は表の通り。 a1 9.1892844.E-01 b1 1.5044994 a2 7.9033803.E-02 b2 10.484590

2.0296637.E-03 b3 38.168013 a3 8.0924889.E-06 101.21355 b4 a4

$$K_{1}(s,-s) = \sum_{k=1}^{4} a_{k} b_{k}^{s} / \Gamma^{2}(s+1)$$

原稿受付日 令和5年1月1日

証明完。

※ 足利大学名誉教授