足利大学研究集録 第57号 2022.3

3次元電磁カスケード B 近似理論

エネルギー流ラテラル分布関数の計算

Ⅳ. 電子エネルギー流ラテラル分布関数の計算

新居誠彦*

A Calculation of Energy-flow Lateral Distribution Function under Approximation B

in Three Dimensional Electron-Photon Cascade Theory.

IV. Representation of Electron Energy-flow Lateral

Distribution Function under Approximation B.

NII Nobuhiko

Abstract

We evaluate the electron energy-flow lateral distribution function under Approximation B, and display graphs for some incident energies.

Keywords : three-dimensional cascade theory, energy-flow lateral distribution function, Approximation B,

1. はじめに

3 次元電磁カスケード B 近似理論にお ける電子数ラテラル分布関数およびエネ ルギー流ラテラル分布関数の表式を第 I 稿で導いた。

本稿(第IV稿)でエネルギー流ラテラル分 布関数の数値を計算する。第V稿で電子数 ラテラル分布関数を数値計算する。エネル ギー流分布関数とそれとを組み合わせて 単位電子の平均エネルギーラテラル分布 関数を求める。3種の結果を図と表に示す。

2. 電子エネルギー流ラテラル分布関数

第 I 稿に示した電子成分のエネルギー 流ラテラル分布関数 $\Pi_E(E_0, E, r, t)$ は A 近似式と B 近似式を含む。¹⁾ ここではエ ネルギー閾値がゼロの B 近似式を取りあ げる。上の表式において $E \rightarrow 0$ とし $\varepsilon \ll E_0 \varepsilon$ 考慮すると B 近似式は, $\Pi_E(E_0, 0, r, t)$ $= \frac{1}{4\pi^2 i} \int_c \left(\frac{E_0 r}{E_s}\right)^s ds H_1(s) e^{\lambda_1(s)t} \times$

$$\times \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{C_{i}(s)}{\alpha_{i}(s)} D_{j}(s) A_{ij}(s,r), \qquad (2.1)$$

$$A_{ij}(s,r) = \frac{E_s}{r^3} \alpha_i(s)^{1/2} \{ \Gamma \left(-\frac{s}{2} + \frac{3}{2}, \frac{\beta_j(s)^2 \varepsilon^2 r^2}{\alpha_i(s) E_s^2} \right) - \Gamma \left(-\frac{s}{2} + \frac{3}{2}, \frac{E_0^2 r^2}{\alpha_i(s) E_s^2} \right) \} - \Gamma \left(-\frac{s}{2} + \frac{3}{2}, \frac{E_0^2 r^2}{\alpha_i(s) E_s^2} \right) \} - \Gamma \left(-\frac{s}{2} + 1, \frac{\beta_j(s)^2 \varepsilon^2 r^2}{\alpha_i(s) E_s^2} \right) \} - \Gamma \left(-\frac{s}{2} + 1, \frac{E_0^2 r^2}{\alpha_i(s) E_s^2} \right) \}.$$
(2.2)

分布関数(2.1)の体積がエネルギー流遷 移曲線を正しく与えることは補遺 I に示 す。ここでは分布関数の形状を検討する。

2.1. ラテラル分布関数の形状

分布関数の形状を吟味する。先ず、ラテ ラル分布関数を次のように書き直す。 $\Pi_E(E_0, 0, r, t)$

$$= \frac{1}{4\pi^{2}i} \int_{c} \left(\frac{E_{0}}{\varepsilon}\right)^{s} ds H_{1}(s) e^{\lambda_{1}(s)t} \cdot \frac{\varepsilon^{3}}{E_{s}^{2}}$$

$$\times \left[\left(\frac{\varepsilon r}{E_{s}}\right)^{s-3} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{C_{i}(s)}{\alpha_{i}(s)^{s/2-1/2}} D_{j}(s)$$

$$\times \left\{ \Gamma \left(-\frac{s}{2} + \frac{3}{2}, \frac{\beta_{j}(s)^{2}}{\alpha_{i}(s)} \left(\frac{\varepsilon r}{E_{s}}\right)^{2} \right) \right\}$$

$$- \Gamma \left(-\frac{s}{2} + \frac{3}{2}, \frac{1}{\alpha_{i}(s)} \left(\frac{E_{0}r}{E_{s}}\right)^{2} \right) \right\}$$

$$- \left(\frac{\varepsilon r}{E_{s}} \right)^{s-2} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{C_{i}(s)}{\alpha_{i}(s)^{s/2}} D_{j}(s) \beta_{j}(s) \times$$

$$\times \{ \Gamma \left(-\frac{s}{2} + 1, \frac{\beta_j(s)^2}{\alpha_i(s)} \left(\frac{\varepsilon r}{E_s} \right)^2 \right)$$
$$-\Gamma \left(-\frac{s}{2} + 1, \frac{1}{\alpha_i(s)} \left(\frac{E_0 r}{E_s} \right)^2 \right) \}]. \tag{2.3}$$

次に, (2.3)の 2 ヶ所にある, 不完全ガンマ 関数の差をそれぞれ

$$\Delta(-s/2+3/2,r) \rightarrow 0, \Delta(-s/2+1,r) \rightarrow 0.$$

ともに上に凸の関数だから最大値を与え る点が存在する。この点を含むある範囲で は変化が緩いため関数値はほぼ一定と見 做すことができる。よって $\Pi_E(r)$ はほぼ

ベキで表される。

以上から分布関数の形状はコアから外 へ向かって、一定→略ベキ→ $r^{-2}e^{-r^2}$ と変 化していく。

3. 重ね合わせの係数

分布関数(2.3)は
$$(\varepsilon r/E_s)^{s^{-3}}$$
の項がおもみ $C_i(s)D_j(s)/\alpha_i(s)^{s/2-1/2}$ で、 $(\varepsilon r/E_s)^{s^{-2}}$ の
項がおもみ $C_i(s)D_j(s)\beta_j(s)/\alpha_i(s)^{s/2}$ で
重ね合わされる。これらの数値を検討する。

3.1. 構成要素の数値

重ね合わせの係数を構成する 4 種の要素; $C_i(s), \alpha_i(s)$ および $D_j(s), \beta_j(s)$ は,

$$\sum_{i=1}^{M} C_{i}(s) \alpha_{i}(s)^{m} = m! C_{0}^{(m)}(s) / \rho_{2m}(s)$$
(3.1)

$$\sum_{j=1}^{N} D_j(s) \beta_j(s)^n = n! \rho_n(s)$$
(3.2)

散乱過程を記述する量 $C_0^{(m)}(s)$ と電離損

失過程を記述する量 $\rho_n(s)$ を第Ⅲ稿で計

算した($m \leq 7, n \leq 14, s = 0.25 \sim 3.5$)。

先ず(3.1)右辺の値を表1と図1に与える。

(3.1)左辺の $\alpha_i(s), C_i(s)$ を表2に示す。

S →	0.25	0.5	1	1.5	2	2.5	3	3.5
α1	0.343383	0.550588	1.227315	2.442919	8.901426	26.47403	72.28332	176.7534
α2	18.82944	31.68772	107.8446	183.6349	1073.321	2804.572	6558.989	13870.7
α3	147.7537	355.0582	1324.454	2127.306	11204.5	28297.89	64015.27	131038.2
α4	936.4834	2283.069	7719.322	16331.34	63850.43	159766.3	357569.8	723495.4
C1	0.990324	0.992787	0.996951	0.992309	0.997459	0.996822	0.996019	0.995116
C2	0.009663	0.007211	0.003048	0.007677	0.00254	0.003176	0.003978	0.00488
C3	1.29E-05	2.55E-06	1.1E-06	1.4E-05	1.53E-06	2.12E-06	2.95E-06	4.01E-06
C4	4.18E-10	1.1E-10	7.66E-11	1.01E-09	1.14E-10	1.65E-10	2.41E-10	3.46E-10
	夫	: 9	α	a) \overline{C}	(s)	<u></u> の値		

$$\mathfrak{A}$$
 2. $\mathfrak{a}_i(s), \mathfrak{O}_i(s) \mathfrak{O}_{\mathbb{R}}$

次に(3.2)右辺の値を表3と図2に示す。

n↓/S→	0.25	0.5	1	1.5	2	2.5	3	3.5
0	1	1	1	1	1	1	1	1
1	0.352043	0.535542	0.817563	1.011395	1.138675	1.226093	1.293491	1.351426
2	0.203982	0.436588	0.930199	1.355245	1.665104	1.887224	2.062463	2.21706
3	0.159546	0.463418	1.322128	2.217027	2.929003	3.455372	3.874612	4.248641
4	0.154729	0.59645	2.222657	4.232646	5.963176	7.276649	8.326263	9.265264
5	0.177491	0.893835	4.276825	9.167248	13.70067	17.22743	20.04752	22.56485
6	0.233714	1.519295	9.215711	22.09146	34.89769	45.10466	53.26468	60.51156
7	0.346003	2.875857	21.8936	58.40331	97.25907	128.9905	154.3549	176.7302
表 3. $n! \rho_n(s)$ の値								

(3.2)左辺の
$$eta_j(s), D_j(s)$$
を表4に示す。

ただし*N*=4とした。

$S \rightarrow$	0.25	0.5	1	1.5	2	2.5	3	3.5
β1	0.105651	0.164566	0.269008	0.355874	0.424867	0.480997	0.529674	0.574114
β2	0.460335	0.638581	0.888563	1.054705	1.163438	1.237948	1.295135	1.343998
β3	1.050944	1.387182	1.811818	2.067391	2.21875	2.310172	2.371723	2.419447
β4	1.951318	2.49126	3.130894	3.496313	3.702594	3.818165	3.887769	3.935581
D1	0.456195	0.399261	0.334196	0.301015	0.282512	0.270352	0.260931	0.252766
D2	0.456357	0.49	0.524691	0.54132	0.551059	0.557959	0.563384	0.567873
D3	0.085377	0.107734	0.136738	0.152498	0.160865	0.165922	0.169783	0.173336
D4	0.002071	0.003005	0.004374	0.005167	0.005565	0.005768	0.005902	0.006025
			. (\	$\langle \rangle$			

表 4.
$$\beta_j(s), D_j(s)$$
の値

3.2. 重ね合わせのおもみ

(2.3)における 2 項の重ね合わせのおもみ

を
$$w_{ij}(s)$$
, $w'_{ij}(s)$ と記す。

$$w_{ij}(s) = \frac{C_i(s)}{\alpha_i(s)^{s/2-1/2}} D_j(s) , \qquad (3.3)$$

$$w_{ij}'(s) = \frac{C_i(s)}{\alpha_i(s)^{s/2}} D_j(s) \ \beta_j(s) \ . \tag{3.4}$$

おもみの組み合わせは16通りあるが、表 2 より $C_2, C_3, C_4 \ll C_1$ であるから $i \ge 2$

の項は考慮しなくてよい。

(3.3), (3.4)で*i*=1とし*s*を径数とした値 を表 6,表 7に示す。

	C1(s)a 1(S)	^(-S/2+1/2	!) × Dj (S)					
	S↓ / j →	1	2	3	4			
	0.25	0.302583	0.3026905	0.0566287	0.001374			
	0.5	0.341444	0.4190431	0.0921327	0.00257			
	1	0.333177	0.5230916	0.1363208	0.004361			
	1.5	0.238923	0.4296589	0.1210414	0.004101			
	2	0.09445	0.184231	0.0537806	0.00186			
	2.5	0.02309	0.0476546	0.0141712	0.000493			
	3	0.003595	0.0077631	0.0023395	8.13E-05			
	3.5	0.003483	0.0078249	0.0023885	8.3E-05			
ı								
	◆S=0.5 ■S=1 ▲S=1.5 ×S=2							
	1.E+00							
	1.E-01	*	*	-				
	1.E-02							
	1.E-03				X			
		1	2	3	4			
	\boxtimes 3. $w_{1j}(s)$ vs. $j; s = 0.5, 1, 1.5, 2$							
(C1(s)α 1(S)^	(-S/2) × Di	(S)β j (S)					
		1	2	2	1			

OI(s)u I(s)	(-3/Z) × D						
S↓ / j→	1	2	3	4			
0.25	0.054554	0.2377843	0.101561	0.004575			
0.5	0.075726	0.3606295	0.1722399	0.008629			
1	0.080903	0.4195541	0.2229456	0.012325			
1.5	0.0544	0.2899347	0.160104	0.009174			
2	0.01345	0.0718416	0.0399949	0.002309			
2.5	0.002159	0.0114656	0.0063627	0.000366			
3	0.000224	0.0011826	0.0006526	3.72E-05			
3.5	0.000235	0.001237	0.0006797	3.84E-05			
表 7. $w_{1j}'(s)$ の値							

$$w'_{1i}(s)$$
の一例を図4に示す。

おもみ(3.3)と(3.4)は同じオーダの大きさ であることを図 3,図4は示す。

4. エネルギー流ラテラル分布関数の数値 計算

$$\Pi_{E}(E_{0},0,r,t) = \frac{1}{4\pi^{2}i} \int_{c} \left(\frac{E_{0}}{\varepsilon}\right)^{s} ds H_{1}(s) e^{\lambda_{1}(s)t}$$
$$\times \frac{\varepsilon^{3}}{E_{s}^{2}} \mathfrak{M}_{E}(s,E_{0},r), \qquad (4.1)$$

$$\begin{aligned} \mathfrak{M}_{E}(s, E_{0}, r) \\ &= \left(\frac{\varepsilon r}{E_{s}}\right)^{s-3} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{C_{i}(s) D_{j}(s)}{\alpha_{i}(s)^{s/2-1/2}} \\ &\times \left\{ \Gamma \left(-\frac{s}{2} + \frac{3}{2}, \frac{\beta_{j}(s)^{2} \varepsilon^{2} r^{2}}{\alpha_{i}(s) E_{s}^{2}} \right) \right\} \\ &- \Gamma \left(-\frac{s}{2} + \frac{3}{2}, \frac{E_{0}^{2} r^{2}}{\alpha_{i}(s) E_{s}^{2}} \right) \right\} \\ &- \left(\frac{\varepsilon r}{E_{s}} \right)^{s-2} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{C_{i}(s) D_{j}(s) \beta_{j}(s)}{\alpha_{i}(s)^{s/2}} \\ &\times \left\{ \Gamma \left(-\frac{s}{2} + 1, \frac{\beta_{j}(s)^{2} \varepsilon^{2} r^{2}}{\alpha_{i}(s) E_{s}^{2}} \right) \right\} \\ &- \Gamma \left(-\frac{s}{2} + 1, \frac{E_{0}^{2} r^{2}}{\alpha_{i}(s) E_{s}^{2}} \right) \right\}. \end{aligned}$$
(4.2)

4.1. 鞍点法(4.1)の積分を鞍点法で実行する。

$$\Pi_{E}(E_{0},0,r,t) = \frac{1}{4\pi^{2}i} \frac{\varepsilon^{3}}{E_{s}^{2}} \int_{c} e^{f_{E}(s)} ds \quad (4.3)$$

と表す。ただし、

$$f_{E}(s) = s \ln \frac{E_{0}}{\varepsilon} + \ln H_{1}(s) + \lambda_{1}(s)t$$

$$+ \ln \mathfrak{M}_{E}(s, E_{0}, r). \qquad (4.4)$$

$$H_1(s)$$
の変化は他の量に比べて緩いため

 $H'_1(s) \approx 0$ と見做すことができる。カスケ ード理論でよく用いるこの近似をここで も採用する。鞍点(エイジ)は $f'_{E}(s) = \ln \frac{E_{0}}{\varepsilon} + \lambda'_{1}(s)t + \frac{\mathfrak{M}'_{E}}{\mathfrak{M}_{-}} = 0 \quad (4.5)$ の解である (s,と記す)。 $f_{E}(s) \delta s_{I}$ の近傍で展開して積分を実行 する。 $\int_{C} e^{f_{E}(s)} ds = e^{f_{E}(s_{1})} \int_{C} e^{(1/2)f_{E}''(s_{1})(s-s_{1})^{2}} ds.$ 積分路cを, s₁を通り虚軸に平行な直線に $\geq \Im : \quad s = s_1 + i\sigma(-\infty < \sigma < \infty).$ 積分は σ についてガウス積分となって、 $\Pi_{E}(E_{0},0,r,t) = \frac{1}{4\pi^{2}} e^{f_{E}(s_{1})} \sqrt{\frac{2\pi}{f_{E}''(s_{1})}}$ $=\frac{1}{\left(2\pi\right)^{3/2}}\frac{\varepsilon^{3}}{E_{s}^{2}}\left(\frac{E_{0}}{\varepsilon}\right)^{s_{1}}H_{1}\left(s_{1}\right)e^{\lambda_{1}\left(s_{1}\right)t}$ $\times \frac{\mathfrak{M}_{E}(s_{1},E_{0},r)}{\sqrt{\lambda_{1}^{\prime\prime}(s_{1})t+(\mathfrak{M}_{E}^{\prime}/\mathfrak{M}_{E})^{\prime}}|_{s_{1}}}.$ (4.6)入射エネルギーは $E_0/\varepsilon = 10^8, 10^6, 10^4,$

10³の4種類とし、深さtは各エネルギーの入射電子が創るシャワーの最大発達時の深さ (Optimum thickness) Tとする。

$$t = T = -\frac{1}{\lambda_1'(1)} \left(\ln \frac{E_0}{\varepsilon} - 1 \right). \tag{4.7}$$

 \mathfrak{M}_{E} の微分は次のように行う:

$$\ln \mathfrak{M}_{E} = \sum_{k=0}^{n} c_{k} s^{k}, (n=6)$$
(4.8)
と多項式近似で近似して微分する。

$$\begin{split} \mathfrak{M}'_{E}/\mathfrak{M}_{E} &= \sum_{k=1}^{n} k c_{k} s^{k-1}, \\ \left(\mathfrak{M}'_{E}/\mathfrak{M}_{E}\right)' &= \sum_{k=2}^{n} k \left(k-1\right) c_{k} s^{k-2}. \\ E_{0}/\varepsilon &= 10^{3} \succeq \cup \varkappa, \quad 10^{-8} \leq \varepsilon r/E_{s} \leq 20 \ \varkappa \end{split}$$

おける $\ln \mathfrak{M}_{E}(s, E_{0}, r)$ を図5に示す。

多項式近似が容易な関数形である。

図 6. エイジ s_1 vs. $\varepsilon r/E_s$

どの入射エネルギーにも共通してエイジ の変化に特徴がある。コアから外へ向かっ て一定値→急減→収束→漸増と変化し,収 束値は $s_1 \simeq 1(\varepsilon r/E_s \simeq 0.4)$. その後,大小 関係が逆転する。

4.2. エネルギー流ラテラル分布関数

エネルギー流ラテラル分布関数,

$$\Pi_E(E_0,0,r,T)/(\varepsilon^3/E_s^2) =$$

$$=\frac{\left(E_{0}/\varepsilon\right)^{s_{1}}H_{1}(s_{1})e^{\lambda_{1}(s_{1})T}\mathfrak{M}_{E}\left(s_{1},E_{0},r\right)}{\left(2\pi\right)^{3/2}\sqrt{\lambda_{1}''(s_{1})T+\left(\mathfrak{M}_{E}'/\mathfrak{M}_{E}\right)'|_{s_{1}}}}$$
(4.10)

を図7に示し、数値を第V稿補遺に示す。

図 7. 電子エネルギー流ラテラル分布関数 $\Pi_{E}\left(E_{0},0,r,T
ight)/\!\left(arepsilon^{3}/E_{s}^{2}
ight)$ vs. $arepsilon r/E_{s}$

なお **M**_E中の不完全ガンマ関数の数値は 文献 2)に依る。

4.3. 分布関数の特徴

(i) コア・中間・遠方の3領域で分布の形

状に§2.1で述べた変化の様子が見える。

(ii) $E_0/\varepsilon = 10^4, 10^3$ の低い入射エネギー

の分布において,平坦からベキへ変化する 境界領域で膨らみ(凸)が現れる。

形状の直接的比較には規格化した関数;

$$\int_{0}^{\infty} \widetilde{\Pi}_{E} \left(E_{0}, 0, r, T \right) 2\pi \frac{\varepsilon r}{E_{s}} d \left(\frac{\varepsilon r}{E_{s}} \right) = 1 \quad (4.11)$$

の比較が適切である(図8)。

図8 規格化した $\Pi_E(E_0,0,r,T)$

(iii) 中間領域 $(1 \times 10^{-2} \leq \varepsilon r / E_s \leq 1)$ 以遠 で図形はほとんど重なる。中間領域ではほ ぼ単一のベキで表される。ベキの値は入射 エネルギーに依らずほぼ-2.3.

(iv) 分布にみえる凸は E_0/ε が大きくなるにしたがって薄れていく。

凸の出現は補遺Ⅱで考察する。

参考文献

 新居誠彦,足利大学研究集録第56号
 (2021.3). 【足利大学 足利短期大学 学術 情報リポジトリ https://ashitech. repo.nii.ac.jpに掲載】
 2) 次のサイト

https://keisan.casio.jp/exec/system/ 1161228685

 新居誠彦,足利大学研究集録第54号
 (2019.3).この文献・第I稿(6.8)式中の C_i(s), a_i(s)は当論文におけるD_i(s),

 $\beta_j(s) \left(1 \le i, j \le 6\right)$ に相当する。

補遺 I. $\Pi_{E}(E_{0},0,r,t)$ の体積

エネルギー流ラテラル分布関数の体積 はエネルギー流遷移曲線を与えなければ ならない。それを確認する。

$$\int_{0}^{\infty} \Pi_{E}(E_{0},0,r,t) 2\pi r dr = V_{E}(E_{0},0,t)$$
とおく。rに関する積分 I は次の型である。

$$I = \frac{1}{2} a^{-p/2-1} \int_{0}^{\infty} x^{p/2} \Gamma(-p/2,x) dx.$$
ここに $p = s - 3$ または $p = s - 2$,

$$a = \frac{(\epsilon\beta_{i}(s))^{2}}{\alpha_{i}(s)E_{s}^{2}} \pm t$$
には $a = \frac{E_{0}^{2}}{\alpha_{i}(s)E_{s}^{2}}.$

$$\int_{0}^{\infty} x^{\mu} \Gamma(\nu,x) dx = (\mu + \nu)!/(\mu + 1) \& \Pi \lor$$

ると
$$I = a^{-p/2-1}/(p+2)$$
. ゆえに
 $V_E(E_0, 0, t) = \frac{1}{2\pi i} \int_c E_0^s ds H_1(s) e^{\lambda_1(s)t}$
 $\times [\frac{1}{s-1} \sum_{j=1}^N D_j(s) \{ \frac{1}{(\varepsilon \beta_j(s))^{s-1}} - \frac{1}{E_0^{s-1}} \}$
 $-\frac{\varepsilon}{s} \sum_{j=1}^N D_j(s) \beta_j(s) \{ \frac{1}{(\varepsilon \beta_j(s))^s} - \frac{1}{E_0^s} \}].$
ここで恒等式 $\sum_{i=1}^M C_i(s) = 1$ を用いた。

一方, B 近似エネルギー流遷移曲線は次 式から求められる。³⁾

$$\Pi_E(E_0, E, t) = \int_E^{E_0} E \pi(E_0, E, t) dE.$$

主要項近似*)のもとで,

$$\begin{aligned} \pi \left(E_0, E, t \right) &= \frac{1}{2\pi i} \int_c E_0^{s} ds H_1(s) \mathrm{e}^{\lambda_1(s)t} \\ &\times \sum_{j=1}^N \frac{D_j(s)}{\left(E + \varepsilon \beta_j(s) \right)^{s+1}}. \end{aligned}$$

よって,

$$\begin{aligned} \Pi_{E}\left(E_{0},E,t\right) &= \frac{1}{2\pi i} \int_{c} E_{0}^{s} ds H_{1}(s) e^{\lambda_{i}(s)t} \sum_{j=1}^{N} D_{j}\left(s\right) \\ &\times \left\{\frac{1}{s-1} \left(\frac{1}{\left(E+\varepsilon\beta_{j}\left(s\right)\right)^{s-1}} - \frac{1}{\left(E_{0}+\varepsilon\beta_{j}\left(s\right)\right)^{s-1}}\right) \\ &- \frac{\varepsilon\beta_{j}\left(s\right)}{s} \left(\frac{1}{\left(E+\varepsilon\beta_{j}\left(s\right)\right)^{s}} - \frac{1}{\left(E_{0}+\varepsilon\beta_{j}\left(s\right)\right)^{s}}\right)\right\}. \end{aligned}$$

 $E \rightarrow 0$ とする。 $\varepsilon \ll E_0$ だから上の各括弧 内第2項における $\varepsilon \beta_i(s)$ は省略できる。

t>2なら可能である。

補遺Ⅱ. エネルギー流ラテラル分布関数 に凸が現れることの検討

図 7 または図 8 にみるように入射エネ ルギーの低い方の分布の形状に膨らみ(凸) がある。分布関数を構成する 4 つの関数:

$$(E_0/\varepsilon)^{s_1}$$
, $\mathfrak{M}_E(s_1, E_0, r)$, $H_1(s_1)e^{\lambda_1(s_1)T}$,
 $1/\sqrt{\lambda_1'T + (\mathfrak{M}'_E/\mathfrak{M}_E)'}$ はエイジを通し
て $\varepsilon r/E_s$ に依存する。このうち

 $\mathfrak{M}_{E}(s_{1}, E_{0}, r)$ は顕著な凸をもつ(図 A

-1)。しかしこの凸がラテラル分布関数の 凸に照応するのではない。頂点の位置がず れているからである。

 \boxtimes A-1 $\mathfrak{M}_{E}(s_{1}, E_{0}, r)$ vs. $\varepsilon r/E_{s}$

それどころか \mathfrak{M}_{E} のこの形状は強力な減 少関数 $\left(E_{0}/\varepsilon\right)^{s_{1}}$ に飲み込まれてしまう。

14

両者の積 $(E_0/\varepsilon)^{s_1} \times \mathfrak{M}_E$ を「第1複合関数」

と呼ぶことにする。第1複合関数は単調減 少関数となるのである(図 A-2)。

図 A-2 第1複合関数 $(E_0/\varepsilon)^{s_1}\mathfrak{m}_E(s_1, E_0, r)$ vs. $\varepsilon r/E_s$

では分布関数に凸の現れる理由は何か。 もう一つの積の関数;

$$H_{1} e^{\lambda_{1}T} \times 1 / \sqrt{\lambda_{1}''T + (\mathfrak{M}_{E}'/\mathfrak{M}_{E})'}$$

を「第2複合関数」と呼ぶことにする。 この形状を示す(図 A-3)。

図 A-3 第2 復合	関委	攵
$H_{1}(s_{1})e^{\lambda_{1}(s_{1})T}$	1761	εr
$\sqrt{\lambda_1''(s_1)T + (\mathfrak{M}_E'/\mathfrak{M}_E)'}$	v	E_{s}

第2複合関数は増加関数である。つまり第 2と第1の2つの複合関数が共に作用して 凸を形成することになる。この事情を

 E_0/ε 別に見てみる(図 A-4, A-5)。 ただし図を見易くするため,起点において 各々の関数値を1に規格化した。

2 つの複合関数の積に凸が現れる原因が みえる。すなわち第2複合関数の増加率が 第1 複合関数の減少率を上回る範囲があ ることである。では何故,第2複合関数に 急増する範囲が生じるのか? この範囲は エイジが急減する範囲と重なる(図6)。 第2複合関数は

 $H_1(s)$, $e^{\lambda_1(s)T}$, $1/\sqrt{\lambda_1''(s)T + (\mathfrak{M}'_E/\mathfrak{M}_E)'}$ の3つの要素で構成される。3要素と第2 複合関数との関係を $E_0/\varepsilon = 10^4 \ge 10^3$ につ

いて別々に図示する(図A-6, A-7)。

どちらの図にも第2複合関数(紫)の急増 する様子がみえる。急増する範囲は各々 $\varepsilon r/E_s = (1 \sim 3) \times 10^{-3}, (1 \sim 2) \times 10^{-2}.$ この範 囲で3要素はそろって増加を示す。つまり

第2複合関数を構成する3要素の*Er*/*E*_s に対する変化率が3つとも正の範囲では

要素との関係 (E₀/ε=10³) 第2複合関数は急増する。この増加率と第

1 複合関数の減少率とが競い合う。双方が 釣合った点で凸は頂点に至る。その後は、 一つの要素(緑)の変化率が負になって全 体(紫)の増加率は緩くなり形状は逆にな る。2つの複合関数のこうした振る舞いが 凸を形成する原因である。この振る舞いの 背景に図 6 にみるようなエイジの急激な 減少がある。加えてこの急減さは入射エネ ルギーの低い方に著しい。

まとめ: 分布関数に凸をもたらす要因

入射エネルギーの低い方の,エネルギー 流分布関数に顕著な膨らみ(凸)が出る。 分布関数はいくつかの関数で構成される。 頂点となる。その位置を過ぎれば増加率は 緩くなり分布の形は下に向く。こうして凸 が形成される。つまり凸を出現させる要因 はエイジの大きな変化(減少)率と構成関 数の構造とにある。このことは電子数分布 関数の形状にも凸の出現を示唆する。

第V稿で電子数ラテラル分布関数の数値 計算を行う。

原稿受付日 令和4年1月1日